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Recently, we have experimentally demonstrated the existence of a capacitance between conductors in the
absence of an insulator. We show that a combination of current continuity and Poisson’s equation leads to a
charge pileup, and thus a capacitance, whenever two dissimilar metals are joined. We verify this with numerical
simulations, and consider this intrinsic, inescapable capacitance in the context of Coulomb blockade devices.
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I. MOTIVATION AND INTRODUCTION

The concept of the measurement of a “pure resistor” has a
long and venerable history, including in the area of resistance
metrology.1 The general notion of a resistance measurement
connotes a circuit with a specific length of metal or semicon-
ductor, defined as the resistor, which is connected by leads
typically of other materials or geometry, to an ohm meter or
other measurement system. As we will show below, this
change in resistivity between the leads and the defined resis-
tor inevitably leads to an inline capacitance that is in parallel
with the resistor; this capacitance is directly associated with
the interface between the different conductors, as schemati-
cally indicated in Fig. 1. Here, the basic concept is: �i� a
lower gate voltage raises the conduction band minimum
�shown with a nonzero bias voltage� in that area; �ii� this
reduces charge density and thus the conductivity in the Si
layer; �iii� from current conservation, the reduction in con-
ductivity leads to an increased electric field in the central
region �shown by density of arrows in lower section and
slope of conduction band minimum in middle section�; and
�iv� by the Poisson equation, a change in the longitudinal
electric field must be produced by a space charge pileup at
the edges of the gate region.

It appears to us that the only exception to this intrinsic
capacitance would be in measurements of a closed loop,
where one might measure the resistance via the capacitively
coupled loss in a measurement circuit. In contrast, it does
appear possible to have a pure capacitance that has no asso-
ciated intrinsic resistance, by putting a highly insulating di-
electric between the metallic leads.

Until recently, this intrinsic capacitance has not been
observable experimentally because in macroscopic objects
its magnitude is too small. As an example, if we consider
a resistance measurement made by connecting Cu leads
to an Evanohm wire wound resistor, 40 gauge wire
�0.08 mm diameter� and 1 foot in length, the resistance
R�80 �, and C�10−18 F. Thus, at any frequency below
1 / �2�RC��1015 Hz, the impedance of this parallel capaci-
tance will be much larger than the resistive impedance; this
frequency is independent of length and cross-sectional area.

Recently, through the phenomenon of the Coulomb
blockade2 in single-electron devices, it has become possible
and even routine to measure such small capacitances. In par-

ticular, in semiconducting single-electron tunneling
transistors,3 it is possible to vary the height of the barrier in
the region of reduced conduction �the tunnel junction�. In
particular, it is possible to reduce the barrier so much that it
no longer forms a tunnel junction but is rather a region of
reduced semiconductor conductivity separating two regions
of larger conductivity. Through Coulomb blockade measure-
ments, we have previously shown it is still possible to mea-
sure the capacitance across this region of reduced
conductivity.4 This work naturally raised the question: how is
it possible to have capacitance across a region which is not
an insulator but rather a conductor? This paper aims to an-
swer that question.

We note that the intrinsic capacitance that we are consid-
ering does not correspond to the commonly considered junc-

FIG. 1. Upper: schematic of crucial parts of device, with con-
ducting electrons at Si /SiO2 interface, and a lower gate that inhibits
conduction in the region underneath �not shown: upper gate that
attracts conducting electrons to interface�; middle: band diagram in
Si at interface. Conduction band �EC� and Fermi level �EF� are tilted
more in barrier region, due to lower carrier density and conductiv-
ity; bottom: carrier density is lower in the barrier region than out-
side. Current continuity leads to higher electric field �density of
arrows� in the barrier region; change in electric field requires the
“charge pileup” as indicated by negative and positive signs at the
edges of the barrier region.
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tion, depletion, nor metal-oxide-semiconductor capacitance,
because all of those three are capacitances across an insulat-
ing depletion region. We should note an important similar
work,5 by the CEA group, which studied the capacitance
dependence on gate voltage in similar devices. They oper-
ated in the regime where the barrier forms a tunnel junction,
and not in the regime considered in this paper, where the
barrier is even lower and controls a region of classical con-
duction. This group suggested the change in capacitance was
due to enhanced electronic polarizability5 in the regime of
tunneling transport. In this paper, we will present a simple
heuristic framework for understanding the intrinsic capaci-
tance in any resistor, present numerical results on a nan-
otransistor that confirm the basic framework, and compare
the model, the numerical results, and the experimental
results.

II. MODEL

As described above, the schematic picture in Fig. 1 pro-
vides our first answer to the question of how capacitance can
develop across a conducting region: the charge piles up at the
interfaces between regions of different conductivity. It is also
illuminating to consider heuristically how the charge pileup
occurs in time, starting from equilibrium, assuming the bar-
rier affects only the carrier density and not the mobility or
drift velocity: starting from zero drain voltage and abruptly
imposing a nonzero drain voltage: �i� a uniform longitudinal
electric field and thus drift velocity leads to a smaller current
density j=nev �n, e, and v are the carrier density, electron
charge, and drift velocity, respectively� in the barrier region;
�ii� the disparities in current densities lead to a buildup of
electron charge at the left interface and a concomitant deficit
at the right interface; �iii� this extra space charge buildup,
through the Poisson equation, leads to an enhanced electric
field and thus an enhanced current density in the barrier re-
gion; and �iv� this pileup continues until the electric field and
drift velocity inside increase enough so that the current den-
sity inside matches the current density outside, reestablishing
current continuity.

From the abrupt picture illustrated in Fig. 1, we can also
obtain a simple qualitative prediction for the barrier capaci-
tance, by generalizing the “Mott-Gurney Square law”:6,7 the
current density j=nine�Ein=noute�Eout, where � is the mo-
bility �assumed constant in this simple derivation� and Ein
and Eout are the electric fields inside and outside the barrier
region. Since the carrier density is lower inside, the electric
field must be higher in order to maintain current continuity.
From Gauss’ law, we have Ein−Eout=� /�b, where � and �b
are the aereal charge density at the boundary and the bound
�not including free-electron contribution� dielectric constant,
respectively. It is straightforward to derive that the capaci-
tance due to the charge buildup is

CB = Cbare�1 − nin/nout� ,

Cbare is the standard geometrical capacitance Cbare=�bA /LG,
LG and A are the barrier length and the wire cross-sectional
area. The two limits of this relation are sensible: for an in-
sulating barrier �nin�nout�, the barrier capacitance recovers

the standard result; for a single continuous piece of metal
�nin=nout�, there are no interfaces and the barrier capacitance
collapses to zero.

Given this simple result for the barrier capacitance from
the charge pileup model, we can also comment on the quan-
titative connection between this capacitance value and Cou-
lomb blockade calculations. In general, calculations of Cou-
lomb blockade depend on capacitances through calculations
of electrostatic energy embodied in the electric fields in those
capacitances. In this context, it is clear from the above that
the barrier capacitance that we have proposed corresponds to
an electric field inside the barrier region; the existence of this
electric field requires energy in just the same way as any
other capacitance. Thus, the barrier capacitance considered
in this paper will be equivalent to any classical capacitance
for calculating Coulomb blockade energetics.

Although heuristically useful, the abrupt picture is un-
physical both due to the discontinuities at the interfaces, and
because of the artificial separation of the longitudinal �x� and
vertical �z� directions. We now consider a toy model which
relaxes both of these constraints and which will also allow us
to evaluate the results of our numerical simulations. We con-
sider a model with both a lower gate �small positive voltage�
and an upper gate �not shown, larger positive voltage�
�Ref. 8� which generate an inversion layer at the top surface
of the Si in the static case, and add a bias voltage VD across
the longitudinal direction for the dynamic case.

Static Case. For the electrostatic potential in the absence
of a bias voltage, we have �=�S�1−�e−��x − x0� / 	�2

� �
z−z0

z0
�2,

where �S is the surface potential at the source and drain,
x0=50 nm, 	=10 nm, and z0=5 nm are the center and half
width of the barrier region and the vertical extent of the
inversion layer, and �=1 /3 is the fractional size of the bar-
rier, with typical values listed; x and z are as defined in Fig.
1. The vertical �z� parabolic dependence is the typical one for
an inversion layer9 leading to a constantly decreasing vertical
electric field Ez from 0 to z0, and a constant negative space
charge over the same region. This negative space charge bal-
ances the positive charge on the lower gate and the upper
gate which produce the inversion layer. The longitudinal �x�
dependence produces a longitudinal electric field in the Si
pointing inward from the upper gate on both sides toward the
barrier region underneath the less positively biased lower
gate.

Dynamic Case. In order to examine the charge pileup in
our toy model, we need to impose a longitudinal bias voltage
drop, VD. Since we can examine in detail the results of the
realistic numerical simulations in the next section, for our
toy model we have chosen a simple prescription which al-
lows us to examine the x and z dependences of the potential,
electric field, and space charge: rather than include resistivity
and current, we simply impose an electrostatic potential that
mimics the voltage drop, and then examine the consequences
of that choice.

In Poisson’s equation, −�2�=� ·E� =�Ex /�x+�Ey /�y
+�Ez /�z=
 /�b��
x+
y +
z� /�b, with E� , Ei the electric field
vector and its components, 
 the space charge density, and
where we have defined 
i to be the terms in the space charge
density corresponding to the partial derivatives of the electric
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field. From the linearity, we can define ��, �E� , �
 to be the
changes in these quantities due to the imposition of
a longitudinal bias voltage.

The potential change is ��=−	VD	�� /2�1+erf��x
−x0� /	��+ �1−��x /L��

z−z0

z0
�2�−	VD	�X�x�Z�z�, where L

=100 nm is the length of the device and ��VLG�=0.6 repre-
sents the fraction of the total voltage drop VD across the
barrier region; this fraction corresponds to the larger resistiv-
ity in this region and contains the dependence on the gate
voltage VLG. �� is shown in Fig. 2, upper with the barrier
region from 40 to 60 nm.

Following Poisson’s equation, we obtain a change in
space charge density �
 /�b= 	VD	��Z�z�e−��x − x0� / 	�2 x−x0

	
1
	2

−2�X�x� 1
z0

2 ����
x+�
z� /�b. The second term �
z /�b is
uniformly negative and acts to balance the additional posi-
tive charge on the gates induced by the negative potential
change ��. The first term �
x /�b has extrema �z=0� at x
=x0	 /
2 of magnitude �	VD	 e−1/2


2
�

	2 � � 	VD	 1
4	2 . The nega-

tive and positive lobes in �
x generate the longitudinal elec-
tric field Ex that points toward the barrier region from both
sides, and thus generates the extra potential drop �� in the
barrier region; �
x is shown in Fig. 2, lower. This toy model
also demonstrates that, as assumed in the abrupt picture dis-
cussed above, it is sensible to separate out the x and z de-
pendences.

Having demonstrated the basic qualitative results of this
toy model, we can also now derive a prediction for the de-
pendence on gate voltage, which we can use when
interpreting the results of the numerical simulations.
We estimate Qlobe by multiplying a volume �=	�yz0=	A
by the maximum �
x=�b	VD	 e−1/2


2
�

	2 to obtain Qlobe=��
x

� 1
2 	VD	

�bA

	 ��VLG� or CB=Qlobe / 	VD	�Cbare��VLG�.
Finally, at the surface z=0, �1 / 	VD	���� /�x
��1−�� /L ,� /2	+ �1−�� /L outside and inside the barrier
region, respectively. From this, we obtain

� �

�Vin

VD
−

d

L

1 −
d

L

, CB � Cbare
1

�L

d
− 1� nin

nout
+ 1

�1 −
nin

nout
� ,

�1�

where d=2	 is the length of the barrier region. Note that the
result for CB is very similar to the abrupt picture result.

III. NUMERICAL SIMULATIONS

Incorporating the important features of our measured
device,8 the device as modeled is indicated in Fig. 3. The
source and drain regions �x�0 and x�99� are regions of

FIG. 2. �Color online� Upper: change in electrostatic potential
due to imposition of bias voltage; note that potential drops off along
x direction more rapidly in barrier region and that modulation falls
off quadratically in z direction. Lower: change in space charge den-
sity �
x due to imposition of bias voltage. Note positive and nega-
tive charge lobes which generate the electric fields and the electro-
static potential change shown in the upper part, and that the
modulation falls off quadratically in the z direction.
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FIG. 3. �Color online� Schematic of device geometry for simu-
lations and simulation result. The schematic shows both the top gate
oxide SiO2 as well as the 4 nm deep active Si layer. The upper gate
and scattering gates provide the conducting electron gas, as well as
the finite conductivity outside the lower gate region. The terminol-
ogy of “upper” and “lower” gates refers to the fact �not shown in
Fig. 3� that in the actual devices, the upper gate is deposited every-
where, and sits on top of the lower gate �with an insulating layer in
between�. By biasing the lower gate to a more negative voltage, the
region underneath the lower gate has a lower carrier density and
conductivity, thus providing the barrier region. In the Si region, we
show contours of constant charge density �
 as generated by the
bias voltage VD. The positive and negative charge lobes demon-
strate the basic result of this work: capacitive charge buildup across
the barrier region, even when about half of the transport occurs via
classical over-the-barrier transport.
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infinite conductivity in the Si. By applying positive voltage
to the upper gate, we attract electrons to the Si /SiO2 inter-
face, thus turning on conduction in the Si. The simulation
does not include bulk Si scattering; thus, in order to get a
finite conductivity in the conducting region outside the bar-
rier, we introduce scattering gates, which have a less positive
voltage than the upper gate. The central lower gate
�middle gate, highlighted in yellow online� has a voltage VLG
applied to it; since VLG�VUG, the barrier region underneath
the lower gate has a lower carrier density and thus conduc-
tivity than the region outside.

We now turn to the results of our numerical simulations.
These fully charge self-consistent quantum transport simula-
tions used a very efficient implementation of the nonequilib-
rium Green’s function formalism,10 termed the Contact
Block Reduction �CBR� method.11,12 The CBR method rig-
orously separates the open system problem into the solution
of a suitably defined closed system �energy-independent�
eigenproblem and the energy-dependent solution of a small
linear system of equations of size determined by the contact
regions that couple the closed system to the leads. Calcula-
tions of the current and charge density of the open system
throughout the device are performed with an effort compa-
rable to a single calculation of a small percentage of the
eigenstates of a closed system.13 The charge self-consistency
is achieved using the predictor-corrector approach as de-
scribed in Ref. 13. In our simulations an electrostatic poten-
tial error tolerance of 10−7 eV was obtained within six to
ten iterations. Such a low error tolerance was essential for
accurate calculation of the capacitive charge distribution, i.e.,
the small difference in the charge density due to the applied
drain bias.

Figure 3 also shows the main simulation result for this
work: positive �blue� and negative �red� charge lobes �total
magnitude of order 10 aC, corresponding to a few percent of
the static charge density generated by the gate voltages� ap-
pear on either side of the barrier region underneath the lower
gate.14 It is particularly important to note that the simulation
was done at a gate voltage of VLG=−0.04 V, when almost
half of the transport is classical over the barrier and not tun-
neling, and where the ratio of nout /nin�3. This simulation
result confirms that there can be a capacitance in the absence
of a pure tunneling barrier, or to put it a different way, that
this system cannot be viewed as a “pure” resistor.

Having demonstrated the basic existence of capacitive
charge lobes for classical over-the-barrier transport, Fig. 4
allows elucidation of some of the underlying physics. The
inset shows that, over the entire range of lower gate voltages
used in the simulation, a substantial fraction of the transport
is over the barrier, as opposed to tunneling under the barrier.
This fraction is calculated by observing that the energy spec-
trum of transport �not shown� contains two peaks at about
−0.01 eV �tunneling� and −0.002 eV �over-the-barrier�, in-
tegrating the area under both peaks, and taking the ratio. The
main part of the figure shows the dependence of the calcu-
lated barrier capacitance CB on the lower gate voltage; as
predicted qualitatively by the models considered above, the
charge pileup and the capacitance decrease as the lower gate
voltage becomes less negative, because the carrier density
and conductivity in the barrier region are getting closer to

those outside. In addition, we show the dependence of � as
well, as calculated from Eq. �1�; the similar dependences of
CB and � show that the charge pileup underlies the simula-
tion results.

Finally, we can compare our simulation results to the ex-
perimental results �Fig. 4 of Ref. 4�. We note first that the
simulation results are in quite good quantitative agreement
with the data, which shows a range of capacitance values
CB � �15,23� aF. In addition, over the experimental voltage
range �this range differs markedly from our simulation re-
sults, due to work function differences which are not consid-
ered in the numerical simulations� from −1.9 to −1.85 V, CB
falls off by about a factor of 1/3, in good agreement with the
numerical results. We note that this decrease is opposite in
direction to that predicted by the electronic polarizability
model.5 The experimental value of the barrier capacitance
increases quite markedly at even less negative finger gate
voltages, presumably because either �i� the enhanced elec-
tronic polarizability5 becomes dominant here or �ii� as in
Ref. 4, the physical width of the barrier region is decreasing
as we continue to make the finger gate voltage less negative.
In terms of the model, if possibility �ii� is correct, it appears
that the dominant effect in this higher gate voltage range is to
increase the value of Cbare.

IV. CONCLUSIONS

In previous work, starting from measurements of the bar-
rier capacitance in a Coulomb blockade device,4 we have
experimentally measured a barrier capacitance even in a re-

FIG. 4. From numerical simulations at T=10 K. Inset: fraction
of transport over the barrier, versus tunneling under the barrier,
as a function of the lower gate voltage. Main: capacitance
�CB�Qlobe /VD� and � as a function of lower gate voltage VLG. As
the gate voltage becomes less negative, the carrier density and con-
ductivity inside the barrier region increase, and thus the charge
pileup decreases, in agreement with the numerical simulations; this
agreement is also indicated by the similarity of the dependence of
��VLG�.
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gime where there is no insulating barrier. In this work, we
have shown that a simple model, confirmed by simulations,
gives an answer to this conundrum: consideration of current
continuity plus Poisson’s equation yields the fact that a “pure
resistance” does not exist; there is always a parallel capaci-
tance which is immeasurably small except in Coulomb-
blockade devices.

Following on from this, we can ask the question: why is
there still Coulomb blockade in a device which has no insu-
lating barrier? The answer to this question is beyond the
scope of this paper and some of the issues have been dis-
cussed previously.15–17 One critical question is whether elec-
trons transport across the barrier region as discrete particles
or in a continuous fluid. In particular, we note that the aver-
age number of electrons in the barrier region in our devices
at any instant in time is substantially less than one, even
when the device is far into the classical over-the-barrier
transport regime. We suggest that this parameter may indeed

be the relevant one for the crossover from discrete particle
transport to a continuous fluid. Finally, we can comment on
an application, as discussed in Ref. 4: by confirming the
charge pileup model, we have strengthened the possibility of
elucidating the shape and size of barrier regions electrostati-
cally produced in these Si nanowires, which will be of great
importance as we move forward with using these for various
applications.
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